Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Bioorg Med Chem ; 104: 117714, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582046

RESUMO

4,9-diaminoacridines with reported antiplasmodial activity were coupled to different trans-cinnamic acids, delivering a new series of conjugates inspired by the covalent bitherapy concept. The new compounds were more potent than primaquine against hepatic stages of Plasmodium berghei, although this was accompanied by cytotoxic effects on Huh-7 hepatocytes. Relevantly, the conjugates displayed nanomolar activities against blood stage P. falciparum parasites, with no evidence of hemolytic effects below 100 µM. Moreover, the new compounds were at least 25-fold more potent than primaquine against P. falciparum gametocytes. Thus, the new antiplasmodial hits disclosed herein emerge as valuable templates for the development of multi-stage antiplasmodial drug candidates.


Assuntos
Antimaláricos , Cinamatos , Malária Falciparum , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Primaquina/farmacologia , Revelação , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Plasmodium berghei
2.
ACS Appl Mater Interfaces ; 16(12): 14533-14547, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38482690

RESUMO

Surface bioconjugation of antimicrobial peptides (AMP) onto nanoparticles (AMP-NP) is a complex, multistep, and time-consuming task. Herein, a microfluidic system for the one-pot production of AMP-NP was developed. Norbornene-modified chitosan was used for NP production (NorChit-NP), and thiolated-AMP was grafted on their surface via thiol-norbornene "photoclick" chemistry over exposure of two parallel UV LEDs. The MSI-78A was the AMP selected due to its high activity against a high priority (level 2) antibiotic-resistant gastric pathogen: Helicobacter pylori (H. pylori). AMP-NP (113 ± 43 nm; zeta potential 14.3 ± 7 mV) were stable in gastric settings without a cross-linker (up to 5 days in pH 1.2) and bactericidal against two highly pathogenic H. pylori strains (1011 NP/mL with 96 µg/mL MSI-78A). Eradication was faster for H. pylori 26695 (30 min) than for H. pylori J99 (24 h), which was explained by the lower minimum bactericidal concentration of soluble MSI-78A for H. pylori 26695 (32 µg/mL) than for H. pylori J99 (128 µg/mL). AMP-NP was bactericidal by inducing H. pylori cell membrane alterations, intracellular reorganization, generation of extracellular vesicles, and leakage of cytoplasmic contents (transmission electron microscopy). Moreover, NP were not cytotoxic against two gastric cell lines (AGS and MKN74, ATCC) at bactericidal concentrations. Overall, the designed microfluidic setup is a greener, simpler, and faster approach than the conventional methods to obtain AMP-NP. This technology can be further explored for the bioconjugation of other thiolated-compounds.


Assuntos
Quitosana , Helicobacter pylori , Nanopartículas , Quitosana/farmacologia , Quitosana/química , Microfluídica , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Norbornanos , Peptídeos Antimicrobianos
3.
Mol Psychiatry ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486048

RESUMO

Early-life stress has been linked to multiple neurodevelopmental and neuropsychiatric deficits. Our previous studies have linked maternal presence/absence from the nest in developing rat pups to changes in prefrontal cortex (PFC) activity. Furthermore, we have shown that these changes are modulated by serotonergic signaling. Here we test whether changes in PFC activity during early life affect the developing cortex leading to behavioral alterations in the adult. We show that inhibiting the PFC of mouse pups leads to cognitive deficits in the adult comparable to those seen following maternal separation. Moreover, we show that activating the PFC during maternal separation can prevent these behavioral deficits. To test how maternal separation affects the transcriptional profile of the PFC we performed single-nucleus RNA-sequencing. Maternal separation led to differential gene expression almost exclusively in inhibitory neurons. Among others, we found changes in GABAergic and serotonergic pathways in these interneurons. Interestingly, both maternal separation and early-life PFC inhibition led to changes in physiological responses in prefrontal activity to GABAergic and serotonergic antagonists that were similar to the responses of more immature brains. Prefrontal activation during maternal separation prevented these changes. These data point to a crucial role of PFC activity during early life in behavioral expression in adulthood.

4.
RSC Adv ; 14(9): 6253-6261, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38375018

RESUMO

Acridines are one of the most important nitrogen-containing heterocycle systems and have many applications in the therapeutic field. However, the synthesis of acridine-based scaffolds is not always straightforward. Herein, we report the optimization of two multi-step synthetic routes towards 4,9-diaminoacridines and 4-aminoacridines, which have shown promising antiplasmodial properties. The improved synthesis pathways make use of greener, simpler, and more efficient methods, with less reaction steps and increased overall yields, which were doubled in some cases. These are impactful results towards future approaches to the chemical synthesis of acridine-based compounds.

5.
Biotechnol Adv ; 68: 108223, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37536466

RESUMO

Agricultural systems are in need of low-cost, safe antibiotics to protect crops from pests and diseases. Peptaibiotics, a family of linear, membrane-active, amphipathic polypeptides, have been shown to exhibit antibacterial, antifungal, and antiviral activity, and to be inducers of plant resistance against a wide range of phytopathogens. Peptaibiotics belong to the new generation of alternatives to agrochemicals, aligned with the United Nations Sustainable Development Goals and the One Health approach toward ensuring global food security and safety. Despite that, these fungi-derived, non-ribosomal peptides remain surprisingly understudied, especially in agriculture, where only a small number has been tested against a reduced number of phytopathogens. This lack of adoption stems from peptaibiotics' poor water solubility and the difficulty to synthesize and purify them in vitro, which compromises their delivery and inclusion in formulations. In this review, we offer a comprehensive analysis of peptaibiotics' classification, biosynthesis, relevance to plant protection, and mode of action against phytopathogens, along with the techniques enabling researchers to extract, purify, and elucidate their structure, and the databases holding such valuable data. It is also discussed how chemical synthesis and ionic liquids could increase their solubility, how genetic engineering and epigenetics could boost in vitro production, and how omics can reduce screenings' workload through in silico selection of the best candidates. These strategies could turn peptaibiotics into effective, ultra-specific, biodegradable tools for phytopathogen control.


Assuntos
Antibacterianos , Peptídeos , Peptídeos/farmacologia , Antibacterianos/farmacologia , Proteínas Fúngicas , Produtos Agrícolas
6.
Insects ; 14(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37367349

RESUMO

The spotted-wing drosophila (Drosophila suzukii) is a polyphagous pest that causes severe damage and economic losses to soft-skinned fruit production. Current control methods are dominated by inefficient cultural practices and broad-spectrum insecticides that, in addition to having toxic effects on non-target organisms, are becoming less effective due to acquired resistance. The increasing awareness of the real impact of insecticides on health and the environment has promoted the exploration of new insecticidal compounds, addressing novel molecular targets. This study explores the efficacy of two orally delivered spider venom peptides (SVPs), J-atracotoxin-Hv1c (Hv1c) and µ-theraphotoxin-Hhn2b (TRTX), to manage D. suzukii, through survival assays and the evaluation of gene expression associated with detoxification pathways. Treatment with TRTX at 111.5 µM for 48 h enhanced fly longevity compared with the control group. Gene expression analysis suggests that detoxification and stress-related mechanisms, such as expression of P450 proteins and apoptotic stimuli signaling, are triggered in D. suzukii flies in response to these treatments. Our results highlight the potential interest of SVPs to control this pest, shedding light on how to ultimately develop improved target-specific formulations.

7.
Eur J Med Chem ; 258: 115575, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37390511

RESUMO

A novel family of 4-aminoacridine derivatives was obtained by linking this heteroaromatic core to different trans-cinnamic acids. The 4-(N-cinnamoylbutyl)aminoacridines obtained exhibited in vitro activity in the low- or sub-micromolar range against (i) hepatic stages of Plasmodium berghei, (ii) erythrocytic forms of Plasmodium falciparum, and (iii) early and mature gametocytes of Plasmodium falciparum. The most active compound, having a meta-fluorocinnamoyl group linked to the acridine core, was 20- and 120-fold more potent, respectively, against the hepatic and gametocyte stages of Plasmodium infection than the reference drug, primaquine. Moreover, no cytotoxicity towards mammalian and red blood cells at the concentrations tested was observed for any of the compounds under investigation. These novel conjugates represent promising leads for the development of new multi-target antiplasmodials.


Assuntos
Aminoacridinas , Antimaláricos , Animais , Aminacrina , Antimaláricos/farmacologia , Mamíferos , Plasmodium berghei , Plasmodium falciparum , Primaquina
8.
Int J Biol Macromol ; 242(Pt 2): 124745, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150376

RESUMO

Malaria, leishmaniasis and Chagas disease are vector-borne protozoal infections with a disproportionately high impact on the most fragile societies in the world, and despite malaria-focused research gained momentum in the past two decades, both trypanosomiases and leishmaniases remain neglected tropical diseases. Affordable effective drugs remain the mainstay of tackling this burden, but toxicicty, inneficiency against later stage disease, and drug resistance issues are serious shortcomings. One strategy to overcome these hurdles is to get new therapeutics or inspiration in nature. Indeed, snake venoms have been recognized as valuable sources of biomacromolecules, like peptides and proteins, with antiprotozoal activity. This review highlights major snake venom components active against at least one of the three aforementioned diseases, which include phospholipases A2, metalloproteases, L-amino acid oxidases, lectins, and oligopeptides. The relevance of this repertoire of biomacromolecules and the bottlenecks in their clinical translation are discussed considering approaches that should increase the success rate in this arduous task. Overall, this review underlines how venom-derived biomacromolecules could lead to pioneering antiprotozoal treatments and how the drug landscape for neglected diseases may be revolutionized by a closer look at venoms. Further investigations on poorly studied venoms is needed and could add new therapeutics to the pipeline.


Assuntos
Doença de Chagas , Leishmaniose , Malária , Humanos , Venenos de Serpentes/química , Peptídeos/farmacologia , Doença de Chagas/tratamento farmacológico , Leishmaniose/tratamento farmacológico
9.
Pharmaceutics ; 15(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37242752

RESUMO

It is key to fight bacterial adhesion to prevent biofilm establishment on biomaterials. Surface immobilization of antimicrobial peptides (AMP) is a promising strategy to avoid bacterial colonization. This work aimed to investigate whether the direct surface immobilization of Dhvar5, an AMP with head-to-tail amphipathicity, would improve the antimicrobial activity of chitosan ultrathin coatings. The peptide was grafted by copper-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry by either its C- or N- terminus to assess the influence of peptide orientation on surface properties and antimicrobial activity. These features were compared with those of coatings fabricated using previously described Dhvar5-chitosan conjugates (immobilized in bulk). The peptide was chemoselectively immobilized onto the coating by both termini. Moreover, the covalent immobilization of Dhvar5 by either terminus enhanced the antimicrobial effect of the chitosan coating by decreasing colonization by both Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria. Relevantly, the antimicrobial performance of the surface on Gram-positive bacteria depended on how Dhvar5-chitosan coatings were produced. An antiadhesive effect was observed when the peptide was grafted onto prefabricated chitosan coatings (film), and a bactericidal effect was exhibited when coatings were prepared from Dhvar5-chitosan conjugates (bulk). This antiadhesive effect was not due to changes in surface wettability or protein adsorption but rather depended on variations in peptide concentration, exposure, and surface roughness. Results reported in this study show that the antibacterial potency and effect of immobilized AMP vary greatly with the immobilization procedure. Overall, independently of the fabrication protocol and mechanism of action, Dhvar5-chitosan coatings are a promising strategy for the development of antimicrobial medical devices, either as an antiadhesive or contact-killing surface.

10.
Membranes (Basel) ; 13(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36837642

RESUMO

Cationic antimicrobial peptides (CAMPs) offer a promising strategy to counteract bacterial resistance, mostly due to their membrane-targeting activity. W-BP100 is a potent broad-spectrum cecropin-melittin CAMP bearing a single N-terminal Trp, which was previously found to improve its antibacterial activity. W-BP100 has high affinity toward anionic membranes, inducing membrane saturation at low peptide-to-lipid (P/L) ratios and membrane permeabilization, with the unique property of promoting the aggregation of anionic vesicles only at specific P/L ratios. Herein, we aimed to investigate this unusual behavior of W-BP100 by studying its aggregation and fusion properties with negatively-charged large (LUVs) or giant (GUVs) unilamellar vesicles using biophysical tools. Circular dichroism (CD) showed that W-BP100 adopted an α-helical conformation in anionic LUVs, neutralizing its surface charge at the aggregation P/L ratio. Its fusion activity, assessed by Förster resonance energy transfer (FRET) using steady-state fluorescence spectroscopy, occurred mainly at the membrane saturation/aggregation P/L ratio. Confocal microscopy studies confirmed that W-BP100 displays aggregation and detergent-like effects at a critical P/L ratio, above which it induces the formation of new lipid aggregates. Our data suggest that W-BP100 promotes the aggregation and fusion of anionic vesicles at specific P/L ratios, being able to reshape the morphology of GUVs into new lipid structures.

11.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674923

RESUMO

This work reports the synthesis, structural and thermal analysis, and in vitro evaluation of the antimicrobial activity of two new organic salts (OSs) derived from the antimycobacterial drug clofazimine and the fluoroquinolones ofloxacin or norfloxacin. Organic salts derived from active pharmaceutical ingredients (API-OSs), as those herein disclosed, hold promise as cost-effective formulations with improved features over their parent drugs, thus enabling the mitigation of some of their shortcomings. For instance, in the specific case of clofazimine, its poor solubility severely limits its bioavailability. As compared to clofazimine, the clofazimine-derived OSs now reported have improved solubility and thermostability, without any major deleterious effects on the drug's bioactivity profile.


Assuntos
Clofazimina , Fluoroquinolonas , Fluoroquinolonas/farmacologia , Clofazimina/farmacologia , Clofazimina/química , Sais , Antibacterianos/farmacologia , Antibacterianos/química , Solubilidade
13.
Biomater Sci ; 11(2): 499-508, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36458466

RESUMO

Wound infection treatment with antimicrobial peptides (AMPs) is still not a reality, due to the loss of activity in vivo. Unlike the conventional strategy of encapsulating AMPs on nanoparticles (NPs) leaving activity dependent on the release profile, this work explores AMP grafting to poly(D,L-lactide-co-glycolide)-polyethylene glycol NPs (PLGA-PEG NPs), whereby AMP exposition, infection targeting and immediate action are promoted. NPs are functionalized with MSI-78(4-20), an equipotent and more selective derivative of MSI-78, grafted through a thiol-maleimide (Mal) Michael addition. NPs with different ratios of PLGA-PEG/PLGA-PEG-Mal are produced and characterized, with 40%PLGA-PEG-Mal presenting the best colloidal properties and higher amounts of AMP grafted as shown by surface charge (+8.6 ± 1.8 mV) and AMP quantification (326 µg mL-1, corresponding to 16.3 µg of AMP per mg of polymer). NPs maintain the activity of the free AMP with a minimal inhibitory concentration (MIC) of 8-16 µg mL-1 against Pseudomonas aeruginosa, and 16-32 µg mL-1 against Staphylococcus aureus. Moreover, AMP grafting accelerates killing kinetics, from 1-2 h to 15 min for P. aeruginosa and from 6-8 h to 0.5-1 h for S. aureus. NP activity in a simulated wound fluid is maintained for S. aureus and decreases slightly for P. aeruginosa. Furthermore, NPs do not demonstrate signs of cytotoxicity at MIC concentrations. Overall, this promising formulation helps unleash the full potential of AMPs for the management of wound infections.


Assuntos
Peptídeos Antimicrobianos , Nanopartículas , Staphylococcus aureus , Polímeros/química , Polietilenoglicóis/química , Nanopartículas/química , Tamanho da Partícula , Portadores de Fármacos/química
14.
Microbiol Spectr ; 10(4): e0229121, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35950860

RESUMO

Following our previous reports on dual-action antibacterial and collagenesis-inducing hybrid peptide constructs based on "pentapeptide-4" (PP4, with amino acid sequence KTTKS), whose N-palmitoyl derivative is the well-known cosmeceutical ingredient Matrixyl, herein we disclose novel ionic liquid/PP4 conjugates (IL-KTTKS). These conjugates present potent activity against either antibiotic-susceptible strains or multidrug resistant clinical isolates of both Gram-positive and Gram-negative bacterial species belonging to the so-called "ESKAPE" group of pathogens. Noteworthy, their antibacterial activity is preserved in simulated wound fluid, which anticipates an effective action in the setting of a real wound bed. Moreover, their collagenesis-inducing effects in vitro are comparable to or stronger than those of Matrixyl. Altogether, IL-KTTKS exert a triple antibacterial, antifungal, and collagenesis-inducing action in vitro. These findings provide solid grounds for us to advance IL-KTTKS conjugates as promising leads for future development of topical treatments for complicated skin and soft tissue infections (cSSTI). Further studies are envisaged to incorporate IL-conjugates into suitable nanoformulations, to reduce toxicity and/or improve resistance to proteolytic degradation. IMPORTANCE As life expectancy increases, diseases causing chronic wound infections become more prevalent. Diabetes, peripheral vascular diseases, and bedridden patients are often associated with non-healing wounds that become infected, resulting in high morbidity and mortality. This is exacerbated by the fact that microbes are becoming increasingly resistant to antibiotics, so efforts must converge toward finding efficient therapeutic alternatives. Recently, our team identified a new type of constructs that combine (i) peptides used in cosmetics to promote collagen formation with (ii) imidazolium-based ionic liquids, which have antimicrobial and skin penetration properties. These constructs have potent wide-spectrum antimicrobial action, including against multidrug-resistant Gram-positive and Gram-negative bacteria, and fungi. Moreover, they can boost collagen formation. Hence, this is an unprecedented class of lead molecules toward development of a new topical medicine for chronically infected wounds.


Assuntos
Anti-Infecciosos , Cosmecêuticos , Líquidos Iônicos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Colágeno/farmacologia , Cosmecêuticos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos/química , Peptídeos/farmacologia
15.
J Cell Mol Med ; 26(10): 2793-2807, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35460166

RESUMO

Tryptophyllins constitute a heterogeneous group of peptides that are one of the first classes of peptides identified from amphibian's skin secretions. Here, we report the structural characterization and antioxidant properties of a novel tryptophyllin-like peptide, named PpT-2, isolated from the Iberian green frog Pelophylax perezi. The skin secretion of P. perezi was obtained by electrical stimulation and fractionated using RP-HPLC. De novo peptide sequencing was conducted using MALDI MS/MS. The primary structure of PpT-2 (FPWLLS-NH2 ) was confirmed by Edman degradation and subsequently investigated using in silico tools. PpT-2 shared physicochemical properties with other well-known antioxidants. To test PpT-2 for antioxidant activity in vitro, the peptide was synthesized by solid phase and assessed in the chemical-based ABTS and DPPH scavenging assays. Then, a flow cytometry experiment was conducted to assess PpT-2 antioxidant activity in oxidatively challenged murine microglial cells. As predicted by the in silico analyses, PpT-2 scavenged free radicals in vitro and suppressed the generation of reactive species in PMA-stimulated BV-2 microglia cells. We further explored possible bioactivities of PpT-2 against prostate cancer cells and bacteria, against which the peptide exerted a moderate antiproliferative effect and negligible antimicrobial activity. The biocompatibility of PpT-2 was evaluated in cytotoxicity assays and in vivo toxicity with Galleria mellonella. No toxicity was detected in cells treated with up to 512 µg/ml and in G. mellonella treated with up to 40 mg/kg PpT-2. This novel peptide, PpT-2, stands as a promising peptide with potential therapeutic and biotechnological applications, mainly for the treatment/prevention of neurodegenerative disorders.


Assuntos
Antioxidantes , Fármacos Neuroprotetores , Animais , Antioxidantes/metabolismo , Anuros/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Peptídeos/química , Ranidae/metabolismo , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
16.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35337121

RESUMO

Peptides have positively impacted the pharmaceutical industry as drugs, biomarkers, or diagnostic tools of high therapeutic value. However, only a handful have progressed to the market. Toxicity is one of the main obstacles to translating peptides into clinics. Hemolysis or hemotoxicity, the principal source of toxicity, is a natural or disease-induced event leading to the death of vital red blood cells. Initial screenings for toxicity have been widely evaluated using erythrocytes as the gold standard. More recently, many online databases filled with peptide sequences and their biological meta-data have paved the way toward hemolysis prediction using user-friendly, fast-access machine learning-driven programs. This review details the growing contributions of in silico approaches developed in the last decade for the large-scale prediction of erythrocyte lysis induced by peptides. After an overview of the pharmaceutical landscape of peptide therapeutics, we highlighted the relevance of early hemolysis studies in drug development. We emphasized the computational models and algorithms used to this end in light of historical and recent findings in this promising field. We benchmarked seven predictors using peptides from different data sets, having 7-35 amino acids in length. According to our predictions, the models have scored an accuracy over 50.42% and a minimal Matthew's correlation coefficient over 0.11. The maximum values for these statistical parameters achieved 100.0% and 1.00, respectively. Finally, strategies for optimizing peptide selectivity were described, as well as prospects for future investigations. The development of in silico predictive approaches to peptide toxicity has just started, but their important contributions clearly demonstrate their potential for peptide science and computer-aided drug design. Methodology refinement and increasing use will motivate the timely and accurate in silico identification of selective, non-toxic peptide therapeutics.

17.
Coimbra; s.n; mar. 2022. 120 p. tab.
Tese em Português | BDENF - Enfermagem | ID: biblio-1399988

RESUMO

O enfermeiro especialista em enfermagem médico-cirúrgica deve ser líder em projetos de melhoria das práticas clínicas, de formação e de investigação, promotores de desenvolvimento de competências que sustentam a ação na sua área de especialização. Assumindo que a simulação poderá contribuir para o desenvolvimento de competências de liderança (CL) definimos a seguinte questão de investigação ?Que CL se desenvolvem através da prática simulada (PS) em enfermagem?? São objetivos do presente estudo: desenvolver um instrumento de avaliação de CL em cenários simulados de urgência/emergência em enfermagem; caraterizar a perceção dos estudantes de enfermagem sobre as CL desenvolvidas pelo team leader (TL) numa PS com cenário de urgência/emergência; analisar se esta perceção está associada a caraterísticas sociodemográficas dos inquiridos; identificar fatores facilitadores e dificultadores no desenvolvimento de CL através da PS e descrever a importância atribuída pelos estudantes a esta estratégia pedagógica no desenvolvimento de CL no ensino da enfermagem. Realizámos um estudo quantitativo, observacional, transversal e correlacional, com amostra formada por 74 estudantes de licenciatura e de mestrado da Escola Superior de Enfermagem de Coimbra, que frequentaram cursos de Suporte Avançado de Vida. Os dados foram recolhidos por uma versão complementada e adaptada da ?Escala de Perceção de Liderança em Enfermagem? (EPLE) de Castilho e Frederico (2006) e por questões que exploram os fatores facilitadores e dificultadores no desenvolvimento de CL através da simulação. Os estudantes evidenciaram uma perceção muito positiva do desenvolvimento de CL através da PS, nas dimensões do reconhecimento, comunicação, desenvolvimento de equipa, inovação e TL do questionário (valores médios ? 4,42; Likert 1-5). Os resultados revelam que PS promoveu no líder o desenvolvimento de competências técnicas (CT), socio-relacionais, concetuais-estratégicas e de liderança pessoal. Em suma, este estudo permitiu destacar a importância da PS no desenvolvimento de CL no ensino da enfermagem e os fatores que facilitam ou dificultam o desempenho do líder de equipa nos cenários simulados em urgência/emergência.


Assuntos
Estudantes de Enfermagem , Enfermagem , Exercício de Simulação , Liderança
18.
ChemMedChem ; 17(5): e202100650, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34882979

RESUMO

Inspired by previous disclosure of room-temperature ionic liquids derived from primaquine and cinnamic acids, which displayed slightly enhanced blood-stage activity compared to the parent drug, we have now combined this emblematic antimalarial with natural fatty acids. This affords surface-active ionic liquids whose liver-stage antiplasmodial activity is either retained or slightly enhanced, while revealing blood-stage antiplasmodial activity at least one order of magnitude higher than that of the parent compound. These findings open new perspectives towards the cost-effective recycling of classical drugs that are either shelved or in decline, and which is not limited to antimalarial agents.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Líquidos Iônicos , Antimaláricos/farmacologia , Análise Custo-Benefício , Antagonistas do Ácido Fólico/farmacologia , Líquidos Iônicos/farmacologia , Plasmodium falciparum , Primaquina/farmacologia
19.
Acta Biomater ; 137: 186-198, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634508

RESUMO

MSI-78A (Pexiganan A) is one of the few antimicrobial peptides (AMPs) able to kill Helicobacter pylori, a pathogenic bacterium that colonizes the gastric mucosa of half of the world's population. Antibiotics fail in 20-40% of H. pylori-infected patients, reinforcing the need for alternative treatments. Herein, a bioengineered approach was developed. MSI-78A with a C-terminal cysteine was grafted onto chitosan microspheres (AMP-ChMic) by thiol-maleimide (Michael-addition) chemistry using a long heterobifunctional spacer (NHS-PEG113-MAL). Microspheres with ∼4 µm diameter (near H. pylori length) and stable at low pH were produced by spray drying using a chitosan solution with an incomplete genipin crosslinking. A 3 × 10-5 µg AMP/microsphere grafting was estimated/confirmed by UV/Vis and FTIR spectroscopies. AMP-ChMic were bactericidal against H. pylori J99 (highly pathogenic human strain) at lower concentrations than the free peptide (∼277 µg grafted MSI-78A-SH/mL vs 512 µg free MSI-78A-SH/mL), even after pre-incubation in simulated gastric conditions with pepsin. AMP-ChMic killed H. pylori by membrane destabilization and cytoplasm release in a ratio of ∼10 bacteria/microsphere. This can be attributed to H. pylori attraction to chitosan, facilitating the interaction of grafted AMP with bacterium membrane. Overall, it was demonstrated that the peptide-microsphere conjugation chemistry did not compromise the MSI-78A antimicrobial activity, instead it boosted its bactericidal performance against H. pylori. STATEMENT OF SIGNIFICANCE: Half of the world's population is infected with Helicobacter pylori, a gastric bacterium that is responsible for 90% of non-cardia gastric cancers. Therefore, H. pylori eradication is now advocated in all infected individuals. However, available antibiotic therapies fail in up to 40% patients. Antimicrobial peptides (AMPs) are appealing alternatives to antibiotics, but their high susceptibility in vivo limits their clinical translation. AMP immobilization onto biomaterials surface will overcome this problem. Herein, we demonstrate that immobilization of MSI-78A (one of the few AMPs with activity against H. pylori) onto chitosan microspheres (AMP-ChMic) enhances its anti-H. pylori activity even at acidic pH (gastric settings). These results highlight the strong potential of AMP-ChMic as an antibiotic alternative for H. pylori eradication.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos/farmacologia , Quitosana , Helicobacter pylori , Antibacterianos/farmacologia , Quitosana/farmacologia , Infecções por Helicobacter , Helicobacter pylori/efeitos dos fármacos , Humanos , Microesferas
20.
Plants (Basel) ; 10(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34961108

RESUMO

Fire blight is a severe bacterial plant disease that affects important chain-of-value fruit trees such as pear and apple trees. This disease is caused by Erwinia amylovora, a quarantine phytopathogenic bacterium, which, although highly distributed worldwide, still lacks efficient control measures. The green revolution paradigm demands sustainable agriculture practices, for which antimicrobial peptides (AMPs) have recently caught much attention. The goal of this work was to disclose the bioactivity of three peptides mixtures (BP100:RW-BP100, BP100:CA-M, and RW-BP100:CA-M), against three strains of E. amylovora representing distinct genotypes and virulence (LMG 2024, Ea 630 and Ea 680). The three AMPs' mixtures were assayed at eight different equimolar concentrations ranging from 0.25 to 6 µM (1:1). Results showed MIC and MBC values between 2.5 and 4 µM for every AMP mixture and strain. Regarding cell viability, flow cytometry and alamarBlue reduction, showed high reduction (>25%) of viable cells after 30 min of AMP exposure, depending on the peptide mixture and strain assayed. Hypersensitive response in tobacco plants showed that the most efficient AMPs mixtures and concentrations caused low to no reaction of the plant. Altogether, the AMPs mixtures studied are better treatment solutions to control fire blight disease than the same AMPs applied individually.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...